Dispersive readout of a high-Q encapsulated micromechanical resonator

Author:

Bousse Nicholas E.1ORCID,Kuenstner Stephen E.2ORCID,Miller James M. L.3ORCID,Kwon Hyun-Keun1,Vukasin Gabrielle D.1ORCID,Teufel John D.4ORCID,Kenny Thomas W.2

Affiliation:

1. Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA

2. Department of Physics, Stanford University, Stanford, California 94305, USA

3. Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

4. National Institute of Standards and Technology, Boulder, Colorado 80305, USA

Abstract

Encapsulated bulk mode microresonators in the megahertz range are used in commercial timekeeping and sensing applications, but their performance is limited by the current state of the art of readout methods. We demonstrate a readout using dispersive coupling between a high-Q encapsulated bulk mode micromechanical resonator and a lumped element microwave resonator that is implemented with commercially available components and standard printed circuit board fabrication methods and operates at room temperature and pressure. A frequency domain measurement of the microwave readout system yields a displacement resolution of [Formula: see text], which demonstrates an improvement over the state of the art of displacement measurement in bulk-mode encapsulated microresonators. This approach can readily be implemented in cryogenic measurements, allowing for future work characterizing the thermomechanical noise of encapsulated bulk mode resonators at cryogenic temperatures.

Funder

National Science Foundation

Defense Advanced Research Projects Agency

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference28 articles.

1. MEMS sensors: past, present and future

2. D. D. Shin , C. H. Ahn , Y. Chen , D. L. Christensen , I. B. Flader , and T. W. Kenny , in IEEE International Conference on Micro Electro Mechanical Systems (MEMS) ( IEEE, 2017), pp. 17–20.

3. Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor

4. Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3