Novel data interpretation method for DIII-D divertor retarding field energy analyzer with 3-D particle-in-cell simulations

Author:

Zhao B.1ORCID,Donovan D. C.1ORCID,Ren J.1ORCID,Phillips M. D.1ORCID

Affiliation:

1. Department of Nuclear Engineering, University of Tennessee , Knoxville, Tennessee 37916, USA

Abstract

A novel data interpretation process that utilizes comprehensive particle-in-cell (PIC) simulations is developed for the new retarding field energy analyzer (RFEA) currently being constructed at DIII-D for the lower divertor using the Divertor Material Evaluation System. This probe is expected to survive a heat load of up to 100 MW/m2 for up to 5 s and reliably measure the main ion temperature (Ti) on the divertor target ranging from 10 to 200 eV. These extreme conditions posed significant engineering limitations on the probe geometry, thus extensive validation work has been performed. The conventional fitting method for the RFEA I–V characteristics is based on a simplified 1-D model without considering the ion space charge inside the probe cavity and may not be sufficient for probes designed for the DIII-D divertor environment. In this article, a more realistic description of the particle propagation process within the RFEA cavity is achieved by including both 3-D geometric effects and ion space charge in the PIC simulations, and the capability to reconstruct the ion energy distribution functions is demonstrated with reasonable consistency.

Funder

Office of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3