Bayesian optimization approach to quantify the effect of input parameter uncertainty on predictions of numerical physics simulations

Author:

McCallum Samuel G.1ORCID,Lerpinière James E.1ORCID,Jensen Kjeld O.2ORCID,Friederich Pascal34ORCID,Walker Alison B.1ORCID

Affiliation:

1. Department of Physics, University of Bath 1 , Bath, United Kingdom

2. Applied Research, British Telecommunications 2 , London, United Kingdom

3. Institute of Theoretical Informatics, Karlsruhe Institute of Technology 3 , Karlsruhe, Germany

4. Institute of Nanotechnology, Karlsruhe Institute of Technology 4 , Karlsruhe, Germany

Abstract

An understanding of how input parameter uncertainty in the numerical simulation of physical models leads to simulation output uncertainty is a challenging task. Common methods for quantifying output uncertainty, such as performing a grid or random search over the model input space, are computationally intractable for a large number of input parameters represented by a high-dimensional input space. It is, therefore, generally unclear as to whether a numerical simulation can reproduce a particular outcome (e.g., a set of experimental results) with a plausible set of model input parameters. Here, we present a method for efficiently searching the input space using Bayesian optimization to minimize the difference between the simulation output and a set of experimental results. Our method allows explicit evaluation of the probability that the simulation can reproduce the measured experimental results in the region of input space defined by the uncertainty in each input parameter. We apply this method to the simulation of charge-carrier dynamics in the perovskite semiconductor methyl-ammonium lead iodide (MAPbI3), which has attracted attention as a light harvesting material in solar cells. From our analysis, we conclude that the formation of large polarons, quasiparticles created by the coupling of excess electrons or holes with ionic vibrations, cannot explain the experimentally observed temperature dependence of electron mobility.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3