A multi-state mapping approach to surface hopping

Author:

Runeson Johan E.1ORCID,Manolopoulos David E.1ORCID

Affiliation:

1. Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory , South Parks Road, Oxford OX1 3QZ, United Kingdom

Abstract

We describe a multiple electronic state adaptation of the mapping approach to surface hopping introduced recently by Mannouch and Richardson [J. Chem. Phys. 158, 104111 (2023)]. Our modification treats populations and coherences on an equal footing and is guaranteed to give populations in any electronic basis that tend to the correct quantum–classical equilibrium values in the long-time limit (assuming ergodicity). We demonstrate its accuracy by comparison with exact benchmark results for three- and seven-state models of the Fenna–Matthews–Olson complex, obtaining electronic populations and coherences that are significantly more accurate than those of fewest switches surface hopping and at least as good as those of any other semiclassical method we are aware of. Since these results were obtained by adapting the scheme of Mannouch and Richardson, we go on to compare our results with theirs for a variety of problems with two electronic states. We find that their method is sometimes more accurate, especially in the Marcus inverted regime. However, in other situations, the accuracies are comparable, and since our scheme can be used with multiple electronic states it can be applied to a wider variety of electronically nonadiabatic systems.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3