A decentralized dispatch model for multiple micro energy grids system considering renewable energy uncertainties and energy interactions

Author:

Si Shengli1ORCID,Sun Wei1ORCID,Wang Yuwei1ORCID

Affiliation:

1. Department of Economics and Management, North China Electric Power University , Hebei 071003, People's Republic of China

Abstract

Micro energy grids (MEGs) play a vital role in realizing carbon neutrality and efficient utilization of renewable energy resources. This research focuses on optimizing the synergy of MEG interconnections. Given the diverse development paths of different operating entities within the system, information barriers emerge among MEGs, creating great difficulties for the collaborative system management. In response, this paper proposes a decentralized coordinated dispatch model targeting multiple stakeholders within the system. This model accounts for energy interactions between MEGs and the inherent uncertainty associated with renewable energy sources. Specifically, stochastic optimization approach was applied to characterize the uncertainty of renewable energy output by generating stochastic scenarios. Furthermore, it incorporates the analytical target cascading (ATC) method to decouple objective functions and constraints, creating autonomous scheduling sub-models for individual MEGs. This decentralized approach ensures independent modeling and coordinated problem-solving. Simulations verify that (1) the ATC-based inter-MEG energy interaction strategy effectively achieves decentralized coordinated scheduling of multiple MEGs and (2) the decentralized coordinated scheduling solution closely approximates the global optimum while considering the interest of various system entities.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3