Magnetohydrodynamic shock refraction at an inclined density interface

Author:

Chen Fang1ORCID,Wheatley Vincent2ORCID,Samtaney Ravi1ORCID

Affiliation:

1. Mechanical Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

2. Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072, Australia

Abstract

Shock wave refraction at a sharp density interface is a classical problem in hydrodynamics. Presently, we investigate the strongly planar refraction of a magnetohydrodynamic (MHD) shock wave at an inclined density interface. A magnetic field is applied that is initially oriented either perpendicular or parallel to the motion of incident shock. We explore flow structure by varying the magnitude of the magnetic field governed by the non-dimensional parameter [Formula: see text] and the inclination angle of density interface [Formula: see text]. The regular MHD shock refraction process results in a pair of outer fast shocks (reflected and transmitted) and a set of inner nonlinear magneto-sonic waves. By varying magnetic field (strength and direction) and inclination interface angle, the latter waves can be slow shocks, slow expansion fans, intermediate shocks, or slow-mode compound waves. For a chosen incident shock strength and density ratio, the MHD shock refraction transitions from regular (all nonlinear waves meeting at a single point) into irregular when the inclined density interface angle is less than a critical value. Irregular refraction patterns are not amenable to an analytical solution, and hence, we have obtained irregular refraction solutions by numerical simulations. Since the MHD shock refraction is self-similar, we further explore by converting the initial value problem into a boundary value problem (BVP) by a self-similar coordinate transformation. The self-similar solution to the BVP is numerically solved using an iterative method and implemented using the p4est adaptive mesh framework. The simulation shows that a Mach stem occurs in an irregular MHD shock refraction, and the flow structure can be an MHD equivalent to a single Mach reflection irregular refraction and convex-forwards irregular refraction that occur in hydrodynamic case. For Mach number M = 2, both analytical and numerical results show that perpendicular magnetics fields suppress the regular to irregular transition compared to the corresponding hydrodynamic case. As Mach number decreased, it is possible that strong perpendicular magnetics promote the regular to irregular transition, while moderate perpendicular magnetics suppress this transition compared to the corresponding hydrodynamic case.

Funder

King Abdullah University of Science and Technology

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3