Quadratic pseudospectrum for identifying localized states

Author:

Cerjan Alexander1ORCID,Loring Terry A.2ORCID,Vides Fredy3ORCID

Affiliation:

1. Center for Integrated Nanotechnologies, Sandia National Laboratories 1 , Albuquerque, New Mexico 87185, USA

2. Department of Mathematics and Statistics, University of New Mexico 2 , Albuquerque, New Mexico 87123, USA

3. Scientific Computing Innovation Center School of Mathematics and Computer Science, Universidad Nacional Autónoma de Honduras 3 , Tegucigalpa, Honduras

Abstract

We examine the utility of the quadratic pseudospectrum for understanding and detecting states that are somewhat localized in position and energy, in particular, in the context of condensed matter physics. Specifically, the quadratic pseudospectrum represents a method for approaching systems with incompatible observables {Aj∣1 ≤ j ≤ d} as it minimizes collectively the errors ‖Ajv − λjv‖ while defining a joint approximate spectrum of incompatible observables. Moreover, we derive an important estimate relating the Clifford and quadratic pseudospectra. Finally, we prove that the quadratic pseudospectrum is local and derive the bounds on the errors that are incurred by truncating the system in the vicinity of where the pseudospectrum is being calculated.

Funder

National Science Foundation

Center for Integrated Nanotechnologies

Universidad Nacional Autonoma de Honduras

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arbitrarily Configurable Nonlinear Topological Modes;Physical Review Letters;2024-09-12

2. Real-space topological invariant for time-quasiperiodic Majorana modes;Physical Review B;2024-07-18

3. Even spheres as joint spectra of matrix models;Journal of Mathematical Analysis and Applications;2024-03

4. Local Markers for Crystalline Topology;Physical Review Letters;2024-02-16

5. Classifying Topology in Photonic Heterostructures with Gapless Environments;Physical Review Letters;2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3