Predicting aerodynamic pressure on a square cylinder from wake velocity field by masked gated recurrent unit model

Author:

Yan Mengtao1ORCID,Zhang Zhiming2ORCID,Gao Shangce2ORCID,Cao Shuyang13ORCID

Affiliation:

1. College of Civil Engineering, Tongji University, Shanghai 200092, China

2. Faculty of Engineering, University of Toyama, Toyama-shi 930-8555, Japan

3. State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

A masked gated recurrent unit (GRU) model is proposed to establish the mapping relationship between surface pressures on a square cylinder and wake velocities, which can be used to predict statistical and instantaneous aerodynamic pressure fields on a square cylinder from its wakefield. A novel mask net is proposed to figure out one or two wake points where the velocities contribute dominantly to the surface pressure field. A three-dimensional unsteady large-eddy simulation of flow around a square cylinder is performed at Re = 22 000 to generate data for training and validating the proposed models. Results show that local mean pressure coefficients can be well predicted from velocities at even one wake point, but the accuracies of predicting fluctuating pressure coefficients and time-series of local pressure coefficients depend on both the model and the surface pressure location, with more satisfactory predictions achieved in the cross-flow direction. High correlation coefficients of pressure coefficient distributions around a square cylinder between predicted and real distributions are achieved except for the masked GRU model with one wake point. Meanwhile, in terms of the temporal correlation coefficient, all models exhibit good prediction of time-series of pressure coefficients on the side and back surfaces where they are strongly affected by vortex shedding and lower accuracy on the front surface where the pressure coefficients deviate somewhat randomly around the mean value. Large prediction error occurs at the corners of the square cylinder. This study has potential application to risk analysis of structures subject to flow-induced loads.

Funder

National Natural Science Foundation of China

State Key Laboratory of Disaster Reduction in Civil Engineering

Japan Society for the Promotion of Science

Japan Science and Technology Agency

AIP Network Laboratory

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3