Wide-range thermal conductivity modulation based on protonated nickelate perovskite oxides

Author:

Li Hao-Bo12ORCID,Bian Zhiping3ORCID,Yoshimura Mitsuki3ORCID,Shimoyama Kohei1,Zhong Chengchao4ORCID,Shimoda Keiji4ORCID,Hattori Azusa N.12ORCID,Yamauchi Kunihiko5ORCID,Hamada Ikutaro6ORCID,Ohta Hiromichi7ORCID,Tanaka Hidekazu12ORCID

Affiliation:

1. SANKEN, Osaka University 1 , Ibaraki, Osaka 567-0047, Japan

2. Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University 2 , Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

3. Graduate School of Information Science and Technology, Hokkaido University 3 , Sapporo 060-0814, Japan

4. Department of Applied Chemistry, Graduate School of Life Sciences, Ritsumeikan University 4 , 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan

5. Center for Spintronics Research Network, Osaka University 5 , Toyonaka, Osaka 560-8531, Japan

6. Department of Precision Engineering, Graduate School of Engineering, Osaka University 6 , Suita, Osaka 565-0871, Japan

7. Research Institute for Electronic Science, Hokkaido University 7 , Sapporo 001-0020, Japan

Abstract

The perovskite oxides ReNiO3 (Re = rare-earth elements) are promising functional materials due to their strongly correlated electrons. Except for the well-known intrinsic metal-insulating transition in these materials, recent progresses have proved that protonation of ReNiO3 can bring about interesting Mott transition in this series. To date, in these protonated species (H-ReNiO3), huge resistance switching, fast ionic diffusion, and their applications as an iontronic transistor, memristor, and fuel cell are reported. In this work, the thermal conductivities of H-ReNiO3 (Re = La, Nd, Sm, and Eu) epitaxial thin films are investigated. The protonation-induced Mott transition can effectively modulate the electronic thermal conductivity while the lattice thermal conductance is less affected. Hence, at room temperature, the metallic LaNiO3 and NdNiO3 exhibit reversible wide thermal conductivity modulation, in ranges of 2.6–12.0 and 1.6–8.0 W m−1 K−1, respectively. These values are much larger than other thermal regulation materials based on transition metal oxides. Thus, our work reveals the great potential of ReNiO3 being applied as a thermal-regulating material. The fast ionic diffusion in H-ReNiO3 also guarantees that a fast response and wide-range thermal transistor can be realized by H-LaNiO3 and H-NdNiO3 in the future.

Funder

Japan Society for the Promotion of Science

Advanced Research Infrastructure for Materials and Nanotechnology in Japan

Cooperative Research Program of Crossover Alliance to Create the Future with People, Intelligence and Materials

JST SPRING

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3