pH-sensitive spontaneous decay of functionalized carbon dots in solutions

Author:

Dilshener Denise1ORCID,Parsons Drew F.23ORCID,Fiedler Johannes1ORCID

Affiliation:

1. Department of Physics and Technology, University of Bergen 1 , Allégaten 55, 5007 Bergen, Norway

2. Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy, Unità Operativa University of Cagliari 2 , Italy

3. Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria 3 , 09042 Monserrato, CA, Italy

Abstract

Carbon quantum dots have become attractive in various applications, such as drug delivery, biological sensing, photocatalysis, and solar cells. Among these, pH sensing via luminescence lifetime measurements of surface-functionalized carbon dots is one application currently investigated for their long lifetime and autonomous operation. In this article, we explore the theoretical connection between excitation lifetimes and the pH value of the surrounding liquid via the protonation and deprotonation of functional groups. Example calculations applied to m-phenylenediamine, phloroglucinol, and tethered disperse blue 1 are shown by applying a separation approach treating the electronic wave function of functional groups separately from the internal electronic structure of the (large) carbon dot. The bulk of the carbon dot is treated as an environment characterized by its optical spectrum that shifts the transition rates of the functional group. A simple relationship between pH, pKa, and mixed fluorescence lifetime is derived from the transition rates of the protonated and deprotonated states. pH sensitivity improves when the difference in the transition rates is greatest between protonated and deprotonated species, with the greatest sensitivity found where the pKa is close to the pH region of interest. The introduced model can directly be extended to consider multicomponent liquids and multiple protonation states.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Norges Forskningsråd

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3