Temperature and pressure dependent rate constants of the reactions of OH• with cyclopentene from variational TST and SS-QRRK methods

Author:

Monteiro João G. S.1ORCID,Neves Douglas C. G.1ORCID,Ventura Arthur C. P. G.1ORCID,Lindgren Eric B.1ORCID,Oliveira Gustavo N.1ORCID,Fleming Felipe P.2,dos Santos Anderson R.2ORCID,Barbosa André G. H.1ORCID

Affiliation:

1. Istituto de Química, Universidade Federal Fluminense, Niterói-RJ 20141-020, Brazil

2. CENPES–PETROBRAS, Rio de Janeiro-RJ 21941-970, Brazil

Abstract

In this work, the pressure- and temperature-dependent reaction rate constants for the hydrogen abstraction and addition of hydroxyl radicals to the unsaturated cyclopentene were studied. Geometries and vibrational frequencies of reactants, products, and transition states were calculated using density functional theory, with single-point energy corrections determined at the domain-based local pair natural orbital-coupled-cluster single double triple/cc-pVTZ-F12 level. The high-pressure limit rate constants were calculated using the canonical variational transition state theory with the small-curvature tunneling approximation. The vibrational partition functions were corrected by the effects of torsional and ring-puckering anharmonicities of the transition states and cyclopentene, respectively. Variational effects are shown to be relevant for all the hydrogen abstraction reactions. The increasing of the rate constants by tunneling is significant at temperatures below 500 K. The pressure dependence on the rate constants of the addition of [Formula: see text] to cyclopentene was calculated using the system-specific quantum Rice–Ramsperger–Kassel model. The high-pressure limit rate constants decrease with increasing temperature in the range 250–1000 K. The falloff behavior was studied at several temperatures with pressures varying between 10−3 and 103 bar. At temperatures below 500 K, the effect of the pressure on the addition rate constant is very modest. However, at temperatures around and above 1000 K, taking pressure into account is mandatory for an accurate rate constant calculation. Branching ratio analyses reveal that the addition reaction dominates at temperatures below 500 K, decreasing rapidly at higher temperatures. Arrhenius parameters are provided for all reactions and pressure dependent Arrhenius parameters are given for the addition of [Formula: see text] to cyclopentene.

Funder

Petrobras

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3