Characterization of H–π and CH–O structures of the 1:1 methanol-benzene complex using matrix isolation infrared spectroscopy

Author:

Amicangelo Jay C.12ORCID,Romano Natalie C.12,Demay Geoffrey R.12,Campbell Ian E.12,Wilkins Joshua D.12

Affiliation:

1. School of Science , Penn State Erie, , Erie, PA 16563-0203, USA

2. The Behrend College, 4205 College Drive , Penn State Erie, , Erie, PA 16563-0203, USA

Abstract

Matrix isolation infrared spectroscopy was used to characterize a 1:1 complex of methanol (CH3OH) and benzene (C6H6). Co-deposition experiments with CH3OH and C6H6 were performed at 17–20 K using nitrogen and argon as the matrix gases. Several new infrared peaks in the co-deposition spectra were observed near the fundamental absorptions of the CH3OH and C6H6 parent molecules and these new peaks have been attributed to CH3OH–C6H6 complexe. Experiments were also performed with isotopic CD3OD and C6D6 and the corresponding infrared peaks of the isotopologue complexes have also been observed. Theoretical calculations were performed for the CH3OH–C6H6 complex using the M06-2X, ωB97X-D, MP2, and CCSD(T) methods with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. Full geometry optimizations followed by vibrational frequency calculations were performed for several initial starting geometries and three stable minima were found for the CH3OH–C6H6 complex. The first has the CH3OH above the C6H6 ring with the OH hydrogen interacting with the π cloud of the ring (H–π complex), the second has the CH3OH above the C6H6 ring with the OH oxygen interacting with one or two of the C–H bonds of the ring (CH–O 1 complex), and the third has the CH3OH towards the side of the C6H6 ring with the OH oxygen interacting with two of the C–H bonds of the ring (CH–O 2 complex). The H–π complex structure is predicted to be the lower energy structure by ∼8 kJ/mol compared to the two CH–O structures. Comparing the theoretically predicted infrared spectra for the optimized CH3OH–C6H6 complex structures to the experimentally observed infrared peaks in argon and nitrogen matrices, it is concluded that in the argon matrices only the H–π complex structure is being observed, whereas in the nitrogen matrices the H–π complex and CH–O 1 complex structures are being observed.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3