Irreversible phase transitions of the multiferroic oxide Mn3TeO6 at high pressures

Author:

Liu Lei12ORCID,Geng Hua Y.1,Pan Xiaolong1,Song Hong X.1,Ivanov Sergey34ORCID,Mathieu Roland3ORCID,Weil Matthias5ORCID,Li Yanchun6,Li Xiaodong6ORCID,Lazor Peter2

Affiliation:

1. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang, Sichuan 621999, China

2. Department of Earth Sciences, Uppsala University, Uppsala 75236, Sweden

3. Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden

4. Department of Chemistry, Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia

5. Institute for Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-SC, Vienna A-1060, Austria

6. Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, China Academy of Science, Beijing 100049, China

Abstract

Due to their large bandgaps, multiferroic oxides, the promising candidates for overcoming the disadvantages of metal-halide perovskites as light absorbers, have so far very limited use in solar cell applications. Previous investigations demonstrate that high pressure represents an efficient tool for tuning the bandgap of multiferroic Mn3TeO6 (MTO). However, the underlying mechanism of the giant bandgap reduction discovered in MTO remains unclear, which critically prevents the design of next-generation light absorbers. In this study, we performed in situ x-ray diffraction analyses on the structure evolution of MTO upon compression and decompression, discovering a sequence of irreversible phase transitions R[Formula: see text]→ C2/c→ P21/n. The experimental results, supported by electronic structure calculations, show the shortening of Mn–O–Mn bonding, and, to a lower extent, the decrease in connectivity of octahedra across the phase transition, explain the giant bandgap reduction of MTO. These findings will facilitate the design and synthesis of next-generation light absorbers in solar cells.

Funder

National Natural Science Foundation of China

National Key Laboratory of Shockwave and Detonation Physics

Uppsala Universitet

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3