Affiliation:
1. School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research 1 , Jakkur, Bangalore 560064, India
2. Institute of Chemical Technology-IndianOil Odisha Campus 2 , Bhubaneswar 751013, India
Abstract
A strenuous effort has been made to design multifunctional lead-free organic–inorganic hybrid (OIH) halide compounds, which are envisioned as next generation solar cell materials. However, it is challenging to design OIH halides that can exhibit both long-range magnetic ordering and high photoluminescence quantum yield (PLQY) since the dimensionality of the compounds has a contrasting effect on them. In this article, we have shown an approach to enhance PLQY in two-dimensional (2D) Heisenberg antiferromagnets by increasing the alkylene chain length of [H3N–(CH2)m–NH3]MnCl4 (m = 2, 3, and 4) compounds. All these compounds exhibit 2D layers of corner-sharing MnCl6 octahedra where the organic cations are intercalated between them. These compounds exhibit long-range antiferromagnetic ordering confirmed by the DC magnetic susceptibility and heat capacity measurements. The Néel temperature (TN) decreases with increasing the length of spacer cations due to a decrease in interlayer exchange interactions; however, interestingly, the lifetime of photoexcited electrons and PLQY enhances from 24 to 56 µs and 8% to 23%, respectively. Furthermore, the temperature-dependent photoluminescence measurements provide insight into thermal quenching and exciton binding energy. We believe this study can help to design new OIH halides with long-range magnetic ordering and high PLQY.
Subject
General Engineering,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献