Estimating the carbon footprint of computational fluid dynamics

Author:

Horwitz J. A. K.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory , P.O. Box 808, Livermore, California 94550-0808, USA

Abstract

Computational resources have grown exponentially in the past few decades. These machines make possible research and design in fields as diverse as medicine, astronomy, and engineering. Despite ever-increasing computational capabilities, direct simulation of complex systems has remained challenging owing to the degrees of freedom involved. At the cusp of exascale computing, high-resolution simulation of practical problems with minimal model assumptions may soon experience a renaissance. However, growing reliance on modern computers comes at the cost of a growing carbon footprint. To illustrate this, we examine historic computations in fluid dynamics where larger computers have afforded the opportunity to simulate flows at increasingly relevant Reynolds numbers. Under a variety of flow configurations, the carbon footprint of such simulations is found to scale roughly with the fourth power of Reynolds number. This is primarily explained by the computation cost in core-hours, which is also described by similar scaling, though regional differences in renewable energy use also play a role. Using the established correlation, we examine a large database of simulations to develop estimates for the carbon footprint of computational fluid dynamics in a given year. Collectively, the analysis provides an additional benchmark for new computations where, in addition to balancing considerations of model fidelity, carbon footprint should also be considered.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Air–water flows;Journal of Hydraulic Research;2024-09-04

2. Image-based predictive modelling frameworks for personalised drug delivery in cancer therapy;Journal of Controlled Release;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3