Development and tuning of the microwave resonant cavity of a cryogenic cesium atomic fountain clock

Author:

Yang Fan123ORCID,Wang Xinliang13ORCID,Fan Sichen123,Bai Yang123,Shi Junru123,Liu Dandan13,Zhang Hui123,Guan Yong13,Hao Qiang13ORCID,Ruan Jun13ORCID,Zhang Shougang13

Affiliation:

1. National Time Service Center, Chinese Academy of Sciences, Xi’an, Shaanxi 710600, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Time and Frequency Primary Standards, Chinese Academy of Sciences, Xi’an, Shaanxi 710600, China

Abstract

A cryogenic cesium atomic fountain clock is a novel clock with the microwave cavity and atomic free flight region placed in liquid nitrogen. On the one hand, the blackbody radiation shift is reduced at cryogenic temperature. On the other hand, the vacuum in the atomic free flight region is optimized, and the background gas collision shift reduced. The microwave resonant cavity is the most important unit in a cryogenic cesium atomic fountain clock. Through theoretical and simulative investigation, this study designs the configuration and dimensions for an optimized microwave cavity. Concurrently, experiments reveal the effects of temperature, pressure, humidity, and other factors on the resonant frequency of the microwave cavity. Combining the theoretical and experimental study, we obtain the resonant frequency difference between the microwave cavity in a cryogenic vacuum and at room temperature and ambient pressure. By subtracting this frequency difference, we adjust the microwave cavity for room temperature and ambient pressure, then vacuumize and immerse it in liquid nitrogen for verification and fine tuning. Finally, we determine that the microwave cavity resonant frequency deviation from the clock transition frequency is 10 kHz with an unloaded quality factor of 25 000, which meets the application requirements of the cryogenic cesium atomic fountain clock.

Funder

West Light Foundation of the Chinese Academy of Sciences

Chinese Academy of Sciences Key Project

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3