Inertial instabilities of stratified jets: Linear stability theory

Author:

Harris M. W.1ORCID,Poulin F. J.1ORCID,Lamb K. G.1ORCID

Affiliation:

1. Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract

This paper uses a linear stability analysis to investigate instabilities of barotropic and baroclinic jets that satisfy the necessary condition for inerital instabilities within the context of a rotating, stratified Boussinesq model. First, we review the different types of instabilities that can occur in these jets and the conditions that make the jet subject to inertial instability but stable to Rayleigh–Taylor instability. Second, we numerically solve one-dimensional and two-dimensional eigenvalue problems for the linear stability problems and examine the dependence of the growth rates on the Rossby number, Burger number, the aspect ratio, and the Reynolds number. We find that there are two critical Reynolds numbers where there is a transition between what type of instability has the largest growth rate. Finally, we examine the characteristics of inertial instabilities in more detail for three selected parameter sets: a low Reynolds number regime, a high Reynolds number regime, and a regime with low Reynolds number and larger aspect ratio. The most unstable mode in the low Reynolds number regime is a barotropic–baroclinic instability and has a barotropic spatial structure. In contrast, the most unstable mode in the high Reynolds number regime is an inertial instability and its spatial structure is independent of the along-flow direction. Modes with this property are commonly referred to as symmetric instabilities. In the intermediate regime, the flow can be unstable to both barotropic–baroclinic and inertial instabilities, possibly with comparable growth rates.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3