Thermo-hydrodynamic lubrication and energy dissipation mechanism of a pump-turbine thrust bearing in load-rejection process

Author:

Cao Jingwei1ORCID,Luo Yongyao2ORCID,Deng Liwei1,Liu Xin1,Yan Shu1,Zhai Liming3,Wang Zhengwei2

Affiliation:

1. Huaneng Clean Energy Research Institute 1 , Beijing 102209, China

2. State Key Laboratory of Hydroscience and Engineering and Department of Energy and Power Engineering, Tsinghua University 2 , Beijing 100084, China

3. Powertrain Business Division, FAW Jiefang Automotive Co., Ltd 3 ., Wuxi 214026, China

Abstract

The dynamic behavior of the pump-turbine thrust bearing is important to the safety operation of the unit. This paper analyzed the lubrication and energy dissipation mechanism of pump-turbine thrust bearing during load-rejection based on the thermo-hydrodynamic model. The results show that the variation of the axial force and the maximum pad surface pressure is basically consistent with that of the inclination of the pad surface. The change of the friction loss is consistent with the change of rotational speed, while the change of pad surface temperature is affected by the combination of pad inclination and rotational speed. The chaotic flow in the oil tank is accompanied by different forms of vortices, such as Taylor vortices, vortex pairs, and Karman vortices, and results in a significant asymmetry in the pressure distribution. The flow in the bearing pad groove has an effect on the energy dissipation in the oil film. This paper provides a theoretical basis for the design and optimization of thrust bearings, and provides a reference for solving the problems of wear, oil mist, and other related problems of thrust bearings in engineering.

Funder

Fund Program of State key laboratory of Hydroscience and Engineering

Publisher

AIP Publishing

Reference35 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3