Robust multi-band acoustic router by hybridizing distinct topological phases

Author:

Hu Yang1,Zhang Zhiwang1ORCID,Cheng Ying12ORCID,Liu Xiaojun12ORCID

Affiliation:

1. Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University 1 , Nanjing 210093, China

2. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences 2 , Beijing 100190, China

Abstract

The acoustic router, capable of guiding sound waves along specific paths, holds a significant value in both science and engineering. Compared to traditional methods of implementing acoustic routing, the recently developed concept of topological acoustics, with its nontrivial topological phases, offers the potential to achieve a robust acoustic routing device. However, current investigations primarily focus on individual topological phases within a single bandgap, thereby limiting the exploration of diverse topological phases in multiple bandgaps and their hybridizations. In this study, we utilize topological acoustics to construct a robust dual-band acoustic router, which is challenging to achieve with traditional acoustics. By calculating Chern and valley topological phases in different bands, we reveal the competitive relations between different topological phases in a specific bandgap. Furthermore, by modifying the boundary meta-atoms, we have increased the operational frequency bands and proposed a triple-band acoustic router.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3