Electrochemical hydrogen evolution on Pt-based catalysts from a theoretical perspective

Author:

Zhang Ke-Xiang1ORCID,Liu Zhi-Pan123ORCID

Affiliation:

1. Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University 1 , Shanghai 200433, China

2. Shanghai Qi Zhi Institution 2 , Shanghai 200030, China

3. Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 3 , Shanghai 200032, China

Abstract

Hydrogen evolution reaction (HER) by splitting water is a key technology toward a clean energy society, where Pt-based catalysts were long known to have the highest activity under acidic electrochemical conditions but suffer from high cost and poor stability. Here, we overview the current status of Pt-catalyzed HER from a theoretical perspective, focusing on the methodology development of electrochemistry simulation, catalytic mechanism, and catalyst stability. Recent developments in theoretical methods for studying electrochemistry are introduced, elaborating on how they describe solid–liquid interface reactions under electrochemical potentials. The HER mechanism, the reaction kinetics, and the reaction sites on Pt are then summarized, which provides an atomic-level picture of Pt catalyst surface dynamics under reaction conditions. Finally, state-of-the-art experimental solutions to improve catalyst stability are also introduced, which illustrates the significance of fundamental understandings in the new catalyst design.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3