Dynamics, interference effects, and multistability in a Lorenz-like system of a classical wave–particle entity in a periodic potential

Author:

Perks J.1ORCID,Valani R. N.1ORCID

Affiliation:

1. School of Computer and Mathematical Sciences, University of Adelaide , Adelaide, South Australia 5005, Australia

Abstract

A classical wave–particle entity (WPE) can be realized experimentally as a droplet walking on the free surface of a vertically vibrating liquid bath, with the droplet’s horizontal walking motion guided by its self-generated wave field. These self-propelled WPEs have been shown to exhibit analogs of several quantum and optical phenomena. Using an idealized theoretical model that takes the form of a Lorenz-like system, we theoretically and numerically explore the dynamics of such a one-dimensional WPE in a sinusoidal potential. We find steady states of the system that correspond to a stationary WPE as well as a rich array of unsteady motions, such as back-and-forth oscillating walkers, runaway oscillating walkers, and various types of irregular walkers. In the parameter space formed by the dimensionless parameters of the applied sinusoidal potential, we observe patterns of alternating unsteady behaviors suggesting interference effects. Additionally, in certain regions of the parameter space, we also identify multistability in the particle’s long-term behavior that depends on the initial conditions. We make analogies between the identified behaviors in the WPE system and Bragg’s reflection of light as well as electron motion in crystals.

Funder

Australian Research Council

Adelaide Summer Research Scholarship

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference67 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3