Condensation of 2D exciton-polaritons in an open-access microcavity

Author:

Li Feng12ORCID,Li Yiming1,Giriunas L.2,Sich M.2ORCID,Solnyshkov D. D.34ORCID,Malpuech G.3,Trichet A. A. P.5,Smith J. M.5ORCID,Clarke E.6ORCID,Skolnick M. S.2,Krizhanovskii D. N.2ORCID

Affiliation:

1. Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Department of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, United Kingdom

3. Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, 4 Avenue Blaise Pascal, 63178 Aubière Cedex, France

4. Institut Universitaire de France (IUF), 75231 Paris, France

5. Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom

6. EPSRC National Centre for III-V Technologies, University of Sheffield, Sheffield S1 3JD, United Kingdom

Abstract

We establish a tunable open-access microcavity consisting of two planar distributed Bragg reflectors (DBRs) individually controlled by nanopositioners. By varying the cavity length, such configuration enables variation of the light–matter coupling strength by a factor of 2, while keeping in microresonators the same active region and cavity mirrors. Polariton condensation was demonstrated over a large range of Rabi splittings and the corresponding threshold diagram was derived as a function of cavity-exciton detuning, which fits well with theoretical simulations. The results show that for various light-matter coupling strengths, optimal detunings featured by the lowest condensation threshold always occur at a fixed depth of energy trap between the exciton reservoir and the polariton ground state, which enables the most efficient exciton–exciton scattering into the condensate state in the driven-dissipative polaritonic system.

Funder

National Natural Science Foundation of China

Shaanxi Key Science and Technology Innovation Team Project

Engineering and Physical Sciences Research Council

Ministry of Education and Science of the Russian Federation

EU TOPOLIGHT

Agence Nationale de la Recherche

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3