Affiliation:
1. Department of Chemistry, Graduate School of Science, Tohoku University, 6–3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
Abstract
Ultraviolet photodissociation processes of gas phase Mg+–NO complex were studied by photofragment ion imaging experiments and theoretical calculations for excited electronic states. At 355 nm excitation, both Mg+ and NO+ photofragment ions were observed with positive anisotropy parameters, and theoretical calculations revealed that the two dissociation channels originate from an electronic transition from a bonding orbital consisting of Mg+ 3s and NO π* orbitals to an antibonding counterpart. For the NO+ channel, the photofragment image exhibited a high anisotropy ( β = 1.53 ± 0.07), and a relatively large fraction (∼40%) of the available energy was partitioned into translational energy. These observations are rationalized by proposing a rapid dissociation process on a repulsive potential energy surface correlated to the Mg(1S) + NO+(1Σ) dissociation limit. In contrast, for the Mg+ channel, the angular distribution was more isotropic ( β = 0.48 ± 0.03) and only ∼25% of the available energy was released into translational energy. The differences in the recoil distribution for these competing channels imply a reaction branching on the excited state surface. On the theoretical potential surface of the excited state, we found a deep well facilitating an isomerization from bent geometry in the Franck–Condon region to linear and/or T-shaped isomer. As a result, the Mg+ fragment was formed via the structural change followed by further relaxation to lower electronic states correlated to the Mg+(2S) + NO(2Π) exit channel.
Funder
Japan Society for the Promotion of Science
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献