Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions

Author:

Vignon C.12,Rabault J.3ORCID,Vinuesa R.1ORCID

Affiliation:

1. FLOW, Engineering Mechanics, KTH Royal Institute of Technology 1 , SE-100 44 Stockholm, Sweden

2. Mines de Paris, Université PSL 2 , 75005 Paris, France

3. IT Department, Norwegian Meteorological Institute 3 , Postboks 43, 0313 Oslo, Norway

Abstract

Deep reinforcement learning (DRL) has been applied to a variety of problems during the past decade and has provided effective control strategies in high-dimensional and non-linear situations that are challenging to traditional methods. Flourishing applications now spread out into the field of fluid dynamics and specifically active flow control (AFC). In the community of AFC, the encouraging results obtained in two-dimensional and chaotic conditions have raised the interest to study increasingly complex flows. In this review, we first provide a general overview of the reinforcement-learning and DRL frameworks, as well as their recent advances. We then focus on the application of DRL to AFC, highlighting the current limitations of the DRL algorithms in this field, and suggesting some of the potential upcoming milestones to reach, as well as open questions that are likely to attract the attention of the fluid mechanics community.

Funder

European Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3