Experimental investigation into segregation behavior of spherical/non-spherical granular mixtures in a thin rotating drum

Author:

Chung Yun-ChiORCID,Hunt Melany L.1ORCID,Huang Jia-Non,Liao Chun-ChungORCID

Affiliation:

1. Department of Mechanical and Civil Engineering, California Institute of Technology 2 , 1200 E California Blvd. MC 104-44, Pasadena, California 91125, USA

Abstract

This paper uses physical experiments to investigate the segregation behavior of binary granular mixtures in a quasi-two-dimensional rotating drum. Spherical polyformaldehyde (POM) beads and cylindrical red beans constitute the granular mixtures. The effects of particle size, particle density, and particle shape interplay during the segregation process in the spherical/non-spherical particulate system. A long-axis ratio (LAR), the ratio of the spherical POM beads' diameter to the red beans' primary dimension, was defined to explore the particle shape effect. The experimental results show that the long-axis ratio and the rotation speed play substantial roles in the granular segregation behavior. As the long-axis ratio increases, the steady-state segregation intensity decreases. An increase in the rotation speed enhances the segregation of the binary granular mixtures for each long-axis ratio studied here. In addition, the average velocity and granular temperature of spherical POM beads increase as the long-axis ratio increases. Both properties also increase as the rotation speed increases. The dynamic angle of repose for the binary mixtures increases with the increase in the long-axis ratio. Most interestingly, reverse granular segregation does occur at a long-axis ratio of 0.70 with the cylindrical red beans in the core and the spherical POM beads at the periphery for each rotation speed studied here. This reverse segregation has not been observed in previous studies. This highlights the substantial impact of particle shape on the granular segregation in binary granular mixtures.

Funder

National Science and Technology Council, Taiwan

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3