The dual nature of metal halide perovskites

Author:

Anta Juan A.1ORCID,Oskam Gerko12ORCID,Pistor Paul1ORCID

Affiliation:

1. Center for Nanoscience and Sustainable Technologies (CNATS), Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide 1 , 41013 Sevilla, Spain

2. Department of Applied Physics, CINVESTAV-IPN 2 , Mérida, Yuc. 97310, Mexico

Abstract

Metal halide perovskites have brought about a disruptive shift in the field of third-generation photovoltaics. Their potential as remarkably efficient solar cell absorbers was first demonstrated in the beginning of the 2010s. However, right from their inception, persistent challenges have impeded the smooth adoption of this technology in the industry. These challenges encompass issues such as the lack of reproducibility in fabrication, limited mid- and long-term stability, and concerns over toxicity. Despite achieving record efficiencies that have outperformed even well-established technologies, such as polycrystalline silicon, these hurdles have hindered the seamless transition of this technology into industrial applications. In this Perspective, we discuss which of these challenges are rooted in the unique dual nature of metal halide perovskites, which simultaneously function as electronic and ionic semiconductors. This duality results in the intermingling of processes occurring at vastly different timescales, still complicating both their comprehensive investigation and the development of robust and dependable devices. Our discussion here undertakes a critical analysis of the field, addressing the current status of knowledge for devices based on halide perovskites in view of electronic and ionic conduction, the underlying models, and the challenges encountered when these devices are optoelectronically characterized. We place a distinct emphasis on the positive contributions that this area of research has not only made to the advancement of photovoltaics but also to the broader progress of solid-state physics and photoelectrochemistry.

Funder

Ministerio de Ciencia e Innovación

Ministerio de Universidades

HORIZON EUROPE European Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3