Heterogeneity of nanoparticle deposition micro-structure and modeling deposition layer thickness variation underneath periodically growing single boiling bubbles in nanofluids

Author:

Wang Dongmin1ORCID,Lin Gaoshuai1ORCID,Dong Wuhan1ORCID,Gao Min1,Shang Lixing2ORCID

Affiliation:

1. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology 1 , Shanghai 200093, People’s Republic of China

2. Shanghai Yanjie Environmental Equipment Co., Ltd. 2 , Shanghai 201413, People’s Republic of China

Abstract

Nanoparticle deposition in nanofluid boiling can significantly impact heat transfer efficiency. However, there is still much to be uncovered regarding the heterogeneity of micro-structures in nanoparticle deposition and how to quantitatively model variations in deposition layer thickness. To gain a deeper understanding, we conducted experiments where single boiling bubbles were grown from an artificial micro-cavity in SiO2 nanofluids with varying concentrations and durations under a constant heat flux. Our results reveal that the nanoparticle deposition region increases with concentration and boiling duration. Notably, while the deposition morphology is irregular near the bubble nucleation site, it becomes more uniform further away from the bubble nucleation site. We believe that the heterogeneity in the micro-structure of the deposition layer is due to differences in the evaporation time of the liquid microlayer at different positions, variations in its thickness beneath a single boiling bubble, and dependency of nanoparticles Brownian motion on temperature. Additionally, the thickness of the deposition layer decreases as the distance from the nucleation site increases. To accurately describe this variation in thickness, we have proposed a semi-empirical correlation based on the liquid microlayer evaporation theory and the conservation of mass of nanoparticles beneath a single boiling bubble. The thickness of the nanoparticle deposition layer is determined by the number of growing bubbles, liquid density, initial thickness of the liquid microlayer, local nanoparticle concentration, and local nanoparticle stacking density. This study provides valuable insights into optimizing micro-structures or thickness of the deposition layer, leading to improved nanofluid boiling heat transfer.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3