On the scaling of three-dimensional shock-induced separated flow due to protuberances

Author:

Bhardwaj S.1ORCID,Hemanth Chandra Vamsi K.1,Sriram R.1ORCID

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India

Abstract

Supersonic flow over three-dimensional bodies protruding out of the turbulent boundary layer was investigated by means of experiments and numerical computations. A parametric study was performed by varying the shape and dimensions of the protuberance, as well as the freestream Mach numbers (1.5, 2, 2.5, 2.89, and 3.5). Surface streak line visualization, surface pressure measurements, and time-resolved Schlieren visualization were employed along with Reynolds-averaged Navier–Stokes computations to elicit the complex flow features such as the separation line, shock pattern, and the horseshoe vortex, which greatly influence the flow dynamics in the separated region. The rise in surface pressure at mid-span due to separation (plateau pressure) was dependent only on the incoming flow parameters and independent of protuberance geometry. The two-dimensional free interaction theory, applied for normal shock-induced separation, closely predicts the mid-span plateau pressure. Although protuberances are of varying shapes and dimensions, the inviscid bow shock (obtained from Euler computations) provided generalized scales, whose effects on shock boundary layer interactions are analyzed. The radius of curvature of the inviscid shock on the wall plane at the nose, which is theoretically related to the local second derivative (along the shock) of pressure jump, was found to be a determining parameter of mid-span separation length ([Formula: see text]). Since the spanwise distance of the sonic point on the inviscid shock was found to be strongly correlated with its nose radius of curvature, it follows that the “strong” portion of the inviscid bow shock fixes the mid-span separation location. These observations concerning mid-span plateau pressure, and the role of strong shock portion in fixing mid-span separation, suggest that the [Formula: see text] shall be predicted from a modification of the scaling laws for the length of plateau pressure region in two-dimensional shock boundary layer interaction, with the inclusion of a spanwise relieving effect. A correlation is obtained relating the [Formula: see text] with various incoming flow parameters and inviscid shock nose radius. The mid-span vortex core position was found to be linearly related to the [Formula: see text]. The radius of curvature of the separation shock is, however, found to be influenced by the entire inviscid shock, including the “weak” portion.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3