Numerical simulations of the laser-driven Petschek-type magnetic reconnection

Author:

Xu Shanshan12ORCID,Mei Zhixing1ORCID,Zhong Jiayong3ORCID,Lin Jun124ORCID

Affiliation:

1. Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650216, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Department of Astronomy, Beijing Normal University, Beijing 100875, China

4. Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China

Abstract

This paper describes a numerical study of the magnetic reconnection between two magnetic fields of opposite polarity. The magnetic fields are created by an electric current in a coil connected to two metal disks. One of the disks is irradiated by a strong laser beam, whereby large amounts of free electrons flow toward the other disk, constituting a closed circuit for the electric current flowing through the coil. Two parallel coils are arranged to connect the two disks, and irradiation of the laser beam on one disk results in parallel electric currents in the two coils, inducing two magnetic fields of opposite polarity in the region between them. The magnetic reconnection that occurs in this region is three-dimensional. This three-dimensional magnetic reconnection is investigated via magnetohydrodynamic numerical simulations. The characteristics of the Petschek-type magnetic reconnection are observed for the first time in such numerical simulations of magnetic reconnection. Changes in the shape of the magnetic field lines form the boundary of the dissipation region and the outflow region. Moreover, the thermal plasma generated by reconnection is strongly confined to the region where the reconnecting current sheet and the slow-mode shock are located, and no leaks of thermal plasma are observed. Comparisons with existing laboratory experiment results confirm that our numerical simulations reproduce the experimental outcomes and provide reasonable explanations for the results observed in laboratories.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Applied Basic Research Foundation of Yunnan Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3