Effect of oxidation on mechanical properties of copper nanowire: A ReaxFF (reactive force field) molecular dynamics study

Author:

Aral Gurcan1ORCID,Islam Md Mahbubul2ORCID

Affiliation:

1. Department of Physics, Izmir Institute of Technology 1 , Urla, Izmir 35430, Türkiye

2. Department of Mechanical Engineering, Wayne State University 2 , 5050 Anthony Wayne Drive, Detroit, Michigan 48202, USA

Abstract

Nanostructures with high surface area to volume ratio, such as oxidized and coated Cu nanowires (NWs), exhibit unique mechanical properties due to their size and surface effects. Understanding the complex oxidation process of Cu NWs at nanoscale and quantifying its resulting effects on mechanical behavior and properties are significantly essential for effective usage of Cu NW devices in a wide range of applications in nanoelectronics. Here, we perform molecular dynamics simulations using ReaxFF (reactive force field) to investigate the oxidation process and mechanisms of [001]-oriented cylindrical Cu NWs and its contribution on the mechanical deformation behavior and material properties as a function of NW sizes. The relatively thin oxide CuxOy layer is formed on the surface of Cu NWs in an O2 environment, creating a core/shell (Cu/CuxOy) NW structure that played a key role in governing the overall tensile mechanical deformation behavior and properties of Cu NW. The formation of oxide layer effects, including the resulting interface and defects, leads to a reduction in the initial dislocation nucleation barrier, which facilitates the onset of plasticity and stress relaxation, ultimately resulting in a negative impact on the tensile strength, Young's modulus, yield stress and strain, and flow stress when compared to pristine counterparts. It is worth noting that the tensile mechanical response and properties of the Cu NWs are highly dependent on the pre-existing oxide shell layer associated with the size of NW, determining the overall mechanical performance and properties of Cu NWs.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3