Predictive capability of the logarithmic law for roughness-modeled large-eddy simulation of turbulent channel flows with rough walls

Author:

Li Shilong12,Yang Xiaolei12ORCID,Lv Yu12

Affiliation:

1. The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Abstract

Direct numerical simulation (DNS) and large-eddy simulation (LES) resolving roughness elements are computationally expensive. LES employing the logarithmic law as the wall model, without the need to resolve the flow at the roughness element scale, provides an efficient alternative for simulating turbulent flows over rough walls. In this work, we evaluate the predictive capability of the roughness-modeled LES by comparing its predictions with those from the roughness-resolved DNS for turbulent channel flows with rough walls. A good agreement is observed for the mean streamwise velocity. The Reynolds stresses predicted by the roughness-modeled LES also reasonably agree with the roughness-resolved predictions. Differences, on the other hand, are observed for the dispersive Reynolds stresses, integral scales, and space-time correlations. The roughness-modeled LES fails to predict the dispersive stresses as one can expect. In the outer layer, the integral length scale predicted by the roughness-modeled LES is lower than the roughness-resolved prediction, which cannot be improved by refining the grid. As for the space-time correlations, discrepancies are shown for the streamwise velocity fluctuations, with a faster decay of the correlation in the outer layer observed in the roughness-modeled predictions. Examination of the space-time correlation using the elliptic approximation model shows that the roughness-modeled LES underpredicts the convection velocity in the near wall region while overpredicting the sweeping velocity in the outer layer with no improvements observed when refining the grid.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

National Numerical Wind Tunnel Project of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3