Modeling of the particle fluxes of a helium plasma jet onto water surface

Author:

Liu Yifan1ORCID,Wang Sui2,Peng Yan3,Peng Wenyi4ORCID,Liu Dingxin14ORCID,Fu Feng1

Affiliation:

1. School of Biomedical Engineering, Fourth Military Medical University 1 , Xi’an 71003, People’s Republic of China

2. Northwest Institute of Mechanical and Electrical Engineering 2 , Xianyang 712099, People’s Republic of China

3. Department of Nuclear Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University 3 , Xi’an 710004, People’s Republic of China

4. State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University 4 , Xi’an 710049, People’s Republic of China

Abstract

The interaction between an atmospheric pressure plasma jet (APPJ) and an aqueous solution has great application prospects in biomedicine and many other fields. Reactive species adjacent to a water surface is critical to the activation of APPJ-treated water, which is affected by both the water evaporation and the admixture of ambient air. In this paper, taking He APPJ as an example, a two-dimensional (2D) cylindrically symmetric fluid model is developed to obtain the spatial distributions of gas components before discharging, and a series of global models are developed for the discharge in the boundary gas layer adjacent to the water surface. The interfacial distributions of reactive species and their fluxes onto the water surface are quantified. It is found that the electron density is 1016–1017 m−3 and it shows an annular distribution in the boundary gas layer. The density distributions of most reactive species there reveal ring-like shapes as well. The dominant cation and anion in such a boundary layer are H3O+ and OH−, respectively. The most abundant metastable is O2(a1Δ), the most abundant reactive oxygen species are H2O2 and OH, and the most abundant reactive nitrogen species are NO and HNO2. The species of H2O2, OH, HO2, and HNO2 are reportedly to have significant biological effects, and in our simulation, their fluxes onto the water surface are remarkable, higher than 1017 m−2 s−1. In addition, the effects of radial gas velocity and water evaporation on the particle flux distributions are also revealed.

Funder

National Natural Science Foundation of China

Postdoctoral Scientific Research Foundation of Air Force Medical University

Partner Laboratory Program of Air Force Medical University

XXXXXXXXXX

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3