Controlled spherical deuterium droplets as Lagrangian tracers for cryogenic turbulence experiments

Author:

Bret ClémentORCID,Chartier JérômeORCID,Diribarne PantxoORCID,Duplat JérômeORCID,Rousset BernardORCID

Abstract

The study of the smallest scales of turbulence by (Lagrangian) particle tracking faces two major challenges: the requirement of a 2D or 3D optical imaging system with sufficiently high spatial and temporal resolution and the need for particles that behave as passive tracers when seeded into the flow. While recent advances in the past decade have led to the development of fast cameras, there is still a lack of suitable methods to seed cryogenic liquid helium flows with mono-disperse particles of sufficiently small size, of the order of a few micrometers, and a density close enough to that of helium. Taking advantage of the surface tension, we propose two different techniques to generate controlled liquid spherical droplets of deuterium over a liquid helium bath. The first technique operates in a continuous mode by fragmenting a liquid jet, thanks to the Rayleigh–Taylor instability. This results in the formation of droplets with a diameter distribution of 2 ± 0.25DN, where DN is the diameter of the jet nozzle (DN = 20 μm in the present experiment). This method offers a high production rate, greater than 30 kHz. The second technique operates in a drop-on-demand mode by detaching droplets from the nozzle using pressure pulses generated using a piezoelectric transducer. This approach yields a much narrower diameter distribution of 2.1 ± 0.05DN but at a smaller production rate, in the range 500 Hz–2 kHz. The initial trajectories and shapes of the droplets, from the moment they are released from the nozzle until they fall 3 mm below, are investigated and discussed based on back-light illumination images.

Funder

Commissariat à l’Énergie Atomique et aux Énergies Alternatives

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3