Tailoring nanoporous graphene via machine learning: Predicting probabilities and formation times of arbitrary nanopore shapes

Author:

Sheshanarayana Rahul12ORCID,Govind Rajan Ananth2ORCID

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India

2. Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India

Abstract

Nanopores in graphene, a 2D material, are currently being explored for various applications, such as gas separation, water desalination, and DNA sequencing. The shapes and sizes of nanopores play a major role in determining the performance of devices made out of graphene. However, given an arbitrary nanopore shape, anticipating its creation probability and formation time is a challenging inverse problem, solving which could help develop theoretical models for nanoporous graphene and guide experiments in tailoring pore sizes/shapes. In this work, we develop a machine learning framework to predict these target variables, i.e., formation probabilities and times, based on data generated using kinetic Monte Carlo simulations and chemical graph theory. Thereby, we enable the rapid quantification of the ease of formation of a given nanopore shape in graphene via silicon-catalyzed electron-beam etching and provide an experimental handle to realize it, in practice. We use structural features such as the number of carbon atoms removed, the number of edge atoms, the diameter of the nanopore, and its shape factor, which can be readily extracted from the nanopore shape. We show that the trained models can accurately predict nanopore probabilities and formation times with R2 values on the test set of 0.97 and 0.95, respectively. Not only that, we obtain physical insight into the working of the model and discuss the role played by the various structural features in modulating nanopore formation. Overall, our work provides a solid foundation for experimental studies to manipulate nanopore sizes/shapes and for theoretical studies to consider realistic structures of nanopores in graphene.

Funder

National Supercomputing Mission

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3