A new scenario for Braess’s paradox in power grids

Author:

Khramenkov V. A.1ORCID,Dmitrichev A. S.1ORCID,Nekorkin V. I.12ORCID

Affiliation:

1. Department of Nonlinear Dynamics, Institute of Applied Physics of RAS, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia

2. Department of Oscillation Theory and Automatic Regulation, Nizhny Novgorod State University, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia

Abstract

We consider several topologies of power grids and analyze how the addition of transmission lines affects their dynamics. The main example we are dealing with is a power grid that has a tree-like three-element motif at the periphery. We establish conditions where the addition of a transmission line in the motif enhances its stability or induces Braess’s paradox and reduces stability of the entire grid. By using bifurcation theory and nonlocal stability analysis, we show that two scenarios for Braess’s paradox are realized in the grid. The first scenario is well described and is associated with the disappearance of the synchronous mode. The second scenario has not been previously described and is associated with the reduction of nonlocal stability of the synchronous mode due to the appearance of asynchronous modes. The necessary conditions for stable operation of the grid, under the addition of a line, are derived. It is proved that the new scenario for Braess’s paradox is realized in the grids with more complex topologies even when several lines are added in their bulks.

Funder

The Scientific and Education Mathematical Center Mathematics for Future Technologies

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Braess's paradox of power grids using graph neural networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-01-01

2. Bistability of operating modes and their switching in a three-machine power grid;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-10-01

3. Introduction to Focus Issue: Dynamics of oscillator populations;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3