Micromagnet design for addressable fast spin manipulations in a 2 × 2 quantum dot array

Author:

Nakamura Shungo1,Kiyama Haruki12ORCID,Oiwa Akira1345

Affiliation:

1. Sanken, Osaka University, Osaka 567-0047, Japan

2. Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan

3. Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Osaka 565-0871, Japan

4. Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan

5. Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan

Abstract

The scaling up of semiconductor quantum dots to two-dimensional arrays is attracting considerable interest for use in large-scale spin-based quantum computation. One of the fundamental technologies to be realized in the two-dimensional arrays of quantum dots is the coherent manipulations of individual electron spins. In this work, we report on a micromagnet design that generates stray magnetic fields that can be used for spin manipulations via electric dipole spin resonance in a 2 × 2 quantum dot array. We consider a micromagnet with lower symmetry than that typically used in the case of linear dot arrays and optimize its dimensions to produce a maximum stray field gradient while maintaining Zeeman splitting differences sufficiently large among the four dots to permit qubit addressability. The optimized field gradient is around 60% smaller than that used in linear dot arrays, but it is still large enough for spin manipulation experiments. Our result represents an important step toward the experimental realization of spin-qubit operations in two-dimensional arrays of quantum dots.

Funder

Japan Society for the Promotion of Science

Support Center for Advanced Telecommunications Technology Research Foundation

Moonshot Research and Development Program

Murata Science Foundation

Dynamic Alliance for Open Innovation Bridging Human Environment and Materials

QSP013, NRC Canada

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal design of nanomagnets for on-chip field gradients;Physical Review Applied;2023-10-24

2. Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control;2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits);2023-06-11

3. Modular nanomagnet design for spin qubits confined in a linear chain;Applied Physics Letters;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3