Rotational and translational diffusion of liquid n-hexane: EFP-based molecular dynamics analysis

Author:

Kim Yu Lim12,Gordon Mark S.12ORCID,Garcia Andres13,Evans James W.13ORCID

Affiliation:

1. Ames Laboratory – U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, USA

2. Department of Chemistry, Iowa State University, Ames, Iowa 50010, USA

3. Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50010, USA

Abstract

Molecular Dynamics (MD) simulations based on the Effective Fragment Potential (EFP) method are utilized to provide a comprehensive assessment of diffusion in liquid n-hexane. We decompose translational diffusion into components along and orthogonal to the long axis of the molecule. Rotational diffusion is decomposed into tumbling and spinning motions about this axis. Our analysis yields four corresponding diffusion coefficients which are related to diagonal entries in the complete 6 × 6 diffusion tensor accounting for the three rotational and three translational degrees of freedom and for the potential coupling between them. However, coupling between different degrees of freedom is expected to be minimal for a natural choice of the molecular body-fixed axis, so then off-diagonal entries in the tensor are negligible. This expectation is supported by a hydrodynamic analysis of the diffusion tensor which treats the liquid surrounding the molecule being tracked as a viscous continuum. Thus, the EFP MD analysis provides a comprehensive characterization of diffusion and also reveals expected shortcomings of the hydrodynamic treatment, particularly for rotational diffusion, when applied to neat liquids.

Funder

USDOE Basic Energy Sciences

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3