Electrostatic self-assembled MXene–graphene oxide composite electrodes for planar supercapacitors

Author:

Fu Xiu-Yan1ORCID,Ma Chang-Jing2,Shu Ruo-Yu1,Zhang Yu-Yin2,Jiang Hao-Bo1

Affiliation:

1. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, the Joint Laboratory of MXene Materials, Jilin Normal University 1 , Changchun 130103, Jilin, China

2. College of Information and Technology, Jilin Normal University 2 , Changchun 130103, Jilin, China

Abstract

MXene based layered materials have exhibited excellent performance in supercapacitor applications owing to their high conductivity. However, device planarization hinders their broader ability in a film-based energy storage device. Here, we have demonstrated the fabrication of self-assembled MXene–graphene oxide (M-GO) composites based on the electrostatic interaction between MXene and GO solutions. The as-prepared M-GO composite possessed homogeneous structures and tunable conductivities according to different GO contents, which benefit both charge storage and ions transmission. The first-assembly sandwiched supercapacitors based on these M-GO composites showed a maximum specific capacitance value of 39.0 mF/cm2 (10.9 mF/cm2 for MXene based devices). The enhanced electrochemical performance after self-assembly was due to the improved interface effect between electrodes and electrolytes. Additionally, the introduction of GO guarantees the completeness of designed M-GO patterns without the need for additives, and it is worth noting that with the assistance of a laser fabrication technique, planar supercapacitors based on the most suitable M-GO (with mass ratio of M:GO = 1:1) composite could be obtained by ablating the unwanted areas. Additionally, planar M-GO based supercapacitors also exhibited excellent electrochemical performance, which demonstrated the great potential of M-GO composite supercapacitors in wearable electronic applications.

Funder

the Development of Science and Technology of Jilin Province

PhD start-up Fund of Jilin Normal University

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3