Valley transport via dual-band elastic topological edge states in local-resonant phononic crystal plate

Author:

Xu Gang-Gang1ORCID,Sun Xiao-Wei1,Wen Xiao-Dong1,Liu Xi-Xuan1,Song Ting1,Liu Zi-Jiang1

Affiliation:

1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

Most previously reported Dirac valley degeneracies in continuous phononic crystal plates originate from Bragg scattering of the structures and generally have only single-band elastic-wave topological edge states. In the present work, a pair of triangular prisms is used in the construction of hexagonal-lattice phononic crystal plates to mimic the dual-band elastic valley Hall effect. Based on the spatial inversion symmetry conditions, which are related to the intrinsic frequencies of the resonators, the valley degeneracies, topological nontrivial bandgaps, and energy band inversion characteristics of multiple resonance modes are investigated by using the finite element method. Edge passbands combining distinct topology phases exist in each of the two nontrivial bandgaps of the ribbon configuration. The full-field simulations for flexural waves in the waveguide structure are demonstrated to support topologically valley-protected edge transmission in both bands, which immunizes the transport against backscattering from large corners and defects in the route. This work provides a reference for valley edge protection in subwavelength continuous elastic plate media and for the manipulation of the elastic waves at multiple frequencies.

Funder

the Industrial Support and Guidance Project of Colleges and Universities

the Youth Science and Technology Foundation of Gansu Province

the Lanzhou Science and Technology Planning Program

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3