A replacement model to simulate the nonlinear dynamics of electro-responsive liquid crystal coatings

Author:

Amiri A.12ORCID,Caasenbrood B.1ORCID,van de Wouw N.1ORCID,Lopez Arteaga I.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Eindhoven University of Technology 1 , 5600 MB Eindhoven, The Netherlands

2. Institute for Complex Molecular Systems, Eindhoven University of Technology 2 , 5600 MB Eindhoven, The Netherlands

Abstract

An electric circuit replacement model is proposed to simulate the key nonlinear dynamics of electro-responsive liquid crystal polymer networks (LCNs). LCNs are known for having great potential to be integrated into smart functional surfaces due to their ability to generate various surface patterns. However, due to their complex molecular dynamics, low-order dynamic models that can accurately describe and predict their dynamic behavior are still lacking. In light of this research gap, we develop a lumped-parameter replacement model based on the observed dynamics in the experimental data and the physics of LCN dielectric properties. The unique assembly of lumped parameters in its simplest form describes the transformation of a high-frequency input voltage to a relatively slow increase in the local height of the LCN coating in between the electrodes, serving as an excitation mechanism to induce height change. The nonlinear dynamics of this height increase, as a function of both excitation frequency and voltage, is described by the proposed model. Furthermore, the comparison of the simulation results with the experimental data from LCN shows that key LCN response characteristics are captured well by the model. This model makes it possible to accurately predict and control the response of the electro-responsive LCN surfaces to obtain a predefined desired deformation pattern, which is a vital requirement for integrating them in haptic and smart surface devices.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3