Affiliation:
1. Department of Physics and Astronomy, University of Sussex, Falmer BN1 9QH, United Kingdom
Abstract
We report on the measurement of the high frequency properties of a planar Penning ion trap fabricated on a chip. Two types of chips have been measured: the first manufactured by photolithographic metal deposition on a p-doped silicon substrate and the second made with printed circuit board technology on an alumina substrate. The input capacitances and the admittances between the different trap’s electrodes play a critical role in the electronic detection of the trapped particles. The measured input capacitances of the photolithographic chip amount to 65−76 pF, while the values for the printed circuit board chips are in the range of 3−5 pF. The latter are small enough for detecting non-destructively a single trapped electron or ion with a specifically tuned LC resonator. We have also measured a mutual capacitance of ∼85 fF between two of the trap’s electrodes in the printed circuit board chip. This enables the detection of single, or very few, trapped particles in a broader range of charge-to-mass ratios with a simple resistor on the chip. We provide analytic calculations of the capacitances and discuss their origin and possible further reduction.
Funder
Engineering and Physical Sciences Research Council
UK Research and Innovation
University of Sussex