Quantitative assessment of acoustic field characteristics in water by radial extracorporeal shockwave therapy

Author:

He Luyao,Guo Anyi,Wang Bo,Liu QingquanORCID,Liu Yajun,Chen XiaodongORCID

Abstract

Radial extracorporeal shockwave therapy (rESWT) is a noninvasive medical technique that treats a range of musculoskeletal conditions. To understand its biological effects and develop personalized treatment plans, it is crucial to fully characterize the acoustic field that rESWT generates. This study presents a quantitative assessment of rESWT's acoustic field, achieved through experiments and simulations. The study measures the acoustic fields using a needle-type hydrophone under different machine settings and establishes and calibrates a computational model based on the experimental measurements. The study also determines the spatial distributions of peak pressure and energy flux density for different driving pressures. High-speed photography is used to visualize cavitation bubbles, which correspond to the negative pressure distribution. The study finds that the axial pressure distribution is similar to the acoustic radiation from an oscillating circular piston, whereas the radial pressure distribution cannot be described by acoustic radiation. Furthermore, the study develops a machine learning model that predicts positive pressure distributions for continuous driving pressure. Overall, this study expands our understanding of the acoustic fields generated by rESWT and provides quantitative information to explore underlying biological mechanisms and determine personalized treatment approaches.

Funder

National Natural Science Foundation of China

Beijing Jishuitan Hospital, Capital Medical University Research Funding

Beijing Hospitals Authority's Ascent Plan

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3