Barrier crossing in a viscoelastic medium under active noise: Predictions of Kramers’ flux-over-population method

Author:

Cherayil Binny J.1ORCID

Affiliation:

1. Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, Karnataka, India

Abstract

The biochemical activity inside a cell has recently been suggested to act as a source of hydrodynamic fluctuations that can speed up or slow down enzyme catalysis [Tripathi et al., Commun. Phys. 5, 101 (2022).] The idea has been tested against and largely corroborated by simulations of activated barrier crossing in a simple fluid in the presence of thermal and athermal noise. The present paper attempts a wholly analytic solution to the same noise-driven barrier crossing problem but generalizes it to include viscoelastic memory effects of the kind likely to be present in cellular interiors. A calculation of the model’s barrier crossing rate, using Kramers’ flux-over-population formalism, reveals that in relation to the case where athermal noise is absent, athermal noise always accelerates barrier crossing, though the extent of enhancement depends on the duration τ0 over which the noise acts. More importantly, there exists a critical τ0—determined by the properties of the medium—at which Kramers’ theory breaks down and, on approach to which, the rate grows significantly. The possibility of such a giant enhancement is potentially open to experimental validation using optically trapped nanoparticles in viscoelastic media that are acted on by externally imposed colored noise.

Funder

Indian Institute of Science

Publisher

AIP Publishing

Reference39 articles.

1. The mechanics and statistics of active matter;Annu. Rev. Condens. Matter Phys.,2010

2. Active matter;J. Stat. Mech.: Theory Exp.

3. Introduction to active matter;Soft Matter,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3