Emergence of ligand-to-metal charge transfer in homogeneous photocatalysis and photosensitization

Author:

Li Chenfei1ORCID,Kong Xin Ying1ORCID,Tan Zheng Hao1,Yang Crystal Ting1ORCID,Soo Han Sen1ORCID

Affiliation:

1. Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371

Abstract

Light energy can be harnessed by photosensitizers or photocatalysts so that some chemical reactions can be carried out under milder conditions compared to the traditional heat-driven processes. To facilitate the photo-driven reactions, a large variety of chromophores that are operated via charge transfer excitations have been reported because of their typically longer excited-state lifetimes, which are the key to the downstream photochemical processes. Although both metal-to-ligand charge transfers and ligand-to-metal charge transfers are well-established light absorption pathways; the former has been widely adopted in photocatalysis, whereas the latter has recently taken on greater importance in photosensitization applications. In this article, we review the latest developments on ligand-to-metal charge transfer photosensitization by molecular complexes across the periodic table by focusing homogeneous photocatalysis and the use of photophysical measurements and computational calculations to understand the electronic structures, photochemical processes, structure–activity relationships, and reaction mechanisms. We also present our perspectives on the possible future developments in the field.

Funder

Agency for Science, Technology and Research

Ministry of Education - Singapore

National Research Foundation Singapore

Nanyang Technological University

American Chemical Society

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3