Optimizing the spontaneous-emission of far-UVC phosphors

Author:

Segal Ohad1ORCID,Shultzman Avner12ORCID,Kurman Yaniv1ORCID,Kaminer Ido1ORCID

Affiliation:

1. Solid State Institute, Technion—Israel Institute of Technology, 32000 Haifa, Israel

2. The Weizmann Institute of Science, 76100 Rehovot, Israel

Abstract

Far-UVC light can enable virus-deactivation while remaining harmless to human tissues. This triggered great efforts to create far-UVC light sources with sufficient emission power and efficiency. However, current sources, such as mercury lamps, KrCl excimer lamps, and LEDs, are made from hazardous chemicals or are limited by low efficiency. Consequently, an alternative approach for reaching the far-UVC is now receiving renewed interest: using phosphors for converting higher frequencies to the desired range of far-UVC. However, this concept is limited by the phosphor's conversion efficiency. In this paper, we propose to utilize principles of nanophotonics to create far-UVC sources. Specifically, we design a phosphor-dielectric multilayer that increases the efficiency of far-UVC light conversion and controls the intrinsic emission properties, including the angular spectrum and emission rate, by shaping the local density of photonic states. To exemplify our approach, we design an aperiodic multilayer nanostructure made of the phosphor material YPO4:Pr3+, showing an increase in light extraction by a factor of 3 compared to naïve bulk structures. Our approach can be applied to any phosphor material and any emitter geometry, opening avenues for engineering nanophotonic light sources in the far-UVC and other spectral regimes.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3