Predicting micro/nanoscale colloidal interactions through local neighborhood graph neural networks

Author:

Filiatraut Alexandra N.1ORCID,Mianroodi Jaber R.2,Siboni Nima H.2,Zanjani Mehdi B.1ORCID

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Miami University 1 , Oxford, Ohio 45056, USA

2. Max-Planck-Institut für Eisenforschung 2 , Düsseldorf, Germany

Abstract

Understanding interparticle interactions has been one of the most important topics of research in the field of micro/nanoscale materials. Many significant characteristics of such materials directly stem from the way their building blocks interact with each other. In this work, we investigate the efficacy of a specific category of Machine Learning (ML) methods known as interaction networks in predicting interparticle interactions within colloidal systems. We introduce and study Local Neighborhood Graph Neural Networks (LN-GNNs), defined according to the local environment of colloidal particles derived from particle trajectory data. The LN-GNN framework is trained for unique categories of particle neighborhood environments in order to predict interparticle interactions. We compare the performance of the LN-GNN to a baseline interaction network with a simpler architecture and to an Instance-Based ML algorithm, which is computationally more expensive. We find that the prediction performance of LN-GNN measured as an average normalized mean absolute error outperforms the baseline interaction network by a factor of 2–10 for different local neighborhood configurations. Furthermore, LN-GNN’s performance turns out to be very comparable to the instance-based ML framework while being an order of magnitude less expensive in terms of the required computation time. The results of this work can provide the foundations for establishing accurate models of colloidal particle interactions that are derived from real particle trajectory data.

Funder

Ohio Space Grant Consortium

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3