Dynamics of liquid flow through fabric porous media: Experimental, analytical, and numerical investigation

Author:

Patari Subhashis1ORCID,Chowdhury Imdad Uddin2ORCID,Kumar Jitendra1,Mahapatra Pallab Sinha1ORCID

Affiliation:

1. Micro Nano Bio-Fluidics Group, Department of Mechanical Engineering, IIT Madras 1 , 600036, India

2. Institute for Technical Thermodynamics, Technical University of Darmstadt 2 , Darmstadt 64287, Germany

Abstract

Over the past few decades, there has been a significant increase in the use of paper-based microfluidic devices in various fields, including environmental monitoring, food safety analysis, and medical diagnostics. As a result, flow through paper-based substrates has gained much attention in the research community. Liquid flows through a paper substrate due to the inherent capillary suction pressure. In order to predict the flow through a paper substrate, we used macro- and microscopic methodologies to construct an analytical and numerical model. We have considered the effect of different factors, e.g., roughness, swelling, dynamic contact angle, and evaporation simultaneously to predict liquid wicking. A modified capillary radius technique is used to incorporate the effects of roughness and swelling into the numerical model, while a sink factor in Darcy's equation is used to model the evaporation. Experiments are performed to validate the developed models, and it is found that both models are in good agreement with the experiments, with a maximum error of 5%. The proposed analytical and numerical models can be used to forecast the capillary rise in a paper-based substrate, which has implications for paper-based microfluidic devices.

Funder

Ministry of Education, Government of India

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3