Effects of fuel/air mixing distances on combustion instabilities in non-premixed combustion

Author:

Cheng JiayingORCID,Liu Bofan,Zhu Tong

Abstract

Combustion instability has been widely reported in several combustion types; however, there is limited information on different fuel/air mixing distances in non-premixed combustion. Setting different distances between air tube and fuel tubes, the fuel/air mixing distances (δ) are changed by structural variations of nozzles. Keeping the heat load and equivalence ratios constant, the present work aims to examine the effects of fuel/air mixing distances on combustion instability in non-premixed combustion. Experimental observations suggest that combustion oscillations occur in non-premixed combustion with flame ignited outside the nozzle rather than other types of non-premixed combustion. Quasiperiodic oscillations, limit cycle modes, and intermittency modes are found in three fuel/air mixing distances in non-premixed combustion. The calculation methods of convection time for non-premixed combustion are established in the present work. The convection time of the limit cycle oscillations is then calculated, which is further found to trigger the second resonance modes of the combustion system. The further analysis reveals that varying fuel/air mixing distances can cause influences on local equivalence ratio distributions, and the convection time are correspondingly varied. The changes in convection time affects the coupling characteristics between heat release rate fluctuations and the acoustic modes in the combustion chamber. When the thermoacoustic coupling occurs, combustion instabilities appear. This work establishes a link between combustion instability and fuel/air mixing distances in non-premixed combustion and highlights the influences on spatial distributions of local equivalence ratios and then convection time, which can provide technical guidance for actual applications in various fuel/air mixing types.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3