Enhancing the reactivity of Si(100)–Cl toward PBr3 by charging Si dangling bonds

Author:

Pavlova T. V.12ORCID,Shevlyuga V. M.1ORCID

Affiliation:

1. Prokhorov General Physics Institute of the Russian Academy of Sciences 1 , Vavilov str. 38, 119991 Moscow, Russia

2. HSE University 2 , Myasnitskaya str. 20, 101000 Moscow, Russia

Abstract

The interaction of the PBr3 molecule with Si dangling bonds (DBs) on a chlorinated Si(100) surface was studied. The DBs were charged in a scanning tunneling microscope (STM) and then exposed to PBr3 directly in the STM chamber. Uncharged DBs rarely react with molecules. On the contrary, almost all positively charged DBs were filled with molecule fragments. As a result of the PBr3 interaction with the positively charged DB, the molecule dissociated into PBr2 and Br with the formation of a Si–Br bond and PBr2 desorption. These findings show that charged DBs significantly modify the reactivity of the surface toward PBr3. Additionally, we calculated PH3 adsorption on a Si(100)–2 × 1–H surface with DBs and found that the DB charge also has a significant impact. As a result, we demonstrated that the positively charged DB with a doubly unoccupied state enhances the adsorption of molecules with a lone pair of electrons.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3