Full quantum calculations of the line shape for H2O perturbed by Ar at temperatures from 20 to 300 K

Author:

Chai Shijie1ORCID,Yu Yipeng1ORCID,Yang Dongzheng2ORCID,Zhou Yanzi1ORCID,Xie Daiqian13ORCID

Affiliation:

1. Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University 1 , Nanjing 210023, China

2. Department of Chemistry and Chemical Biology, University of New Mexico 2 , Albuquerque, New Mexico 87131, USA

3. Hefei National Laboratory 3 , Hefei 230088, China

Abstract

This work theoretically studied the spectral line shape of H2O perturbed by Ar in the temperature range of 20–300 K for the pure rotational lines below 360 cm−1, as well as three lines (31, 2 ← 44, 1, 54, 2 ← 41, 3, and 73, 5 ← 60, 6) in the v2 band. In order to perform precise dynamical calculations at low collision energies, a full-dimensional long-range potential energy surface was constructed for the H2O–Ar system for the first time to correct the long range of our newly developed intermolecular potential energy surface. Subsequently, the six line-shape parameters (pressure-broadening and -shifting parameters, their speed dependencies, and the complex Dicke parameters) were determined from the generalized spectroscopic cross section by the full quantum time-independent close-coupling approach on this new potential energy surface. Our theoretical results are in good agreement with the available experimental observations. Furthermore, the influence of the speed-dependence and Dicke narrowing effects on the line contour was revealed by comparing the differences among the Hartmann–Tran, quadratic-speed-dependent Voigt, and Voigt profiles. The temperature dependence of each line-shape parameter was further parameterized using the triplet-power-law for three pure rotational 61, 6 ← 52, 3, 41, 4 ← 32, 1, and 31, 3 ← 22, 0 lines. These line-shape parameters will provide a comprehensive set of theoretical references for subsequent experimental measurements.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3